Wie bestimmt man den Formparameter a einer Parabel, wenn die Gleichung bis auf diesen bekannt ist?
Die Gleichung einer Parabel sei bis auf den Formfaktor a bekannt. Dann lässt sich a bestimmen, indem man einen Punkt des Graphen aus dem Koordinatensystem abliest, ihn in die Parabelgleichung einsetzt und die Gleichung nach a auflöst.
Beispiel
Lösung: Man liest den Punkt (3|-5) ab und setzt ihn in die Gleichung ein:
| = |
| Koordinaten einsetzen | |||||||||
| = |
| ||||||||||
| = |
|
| |||||||||
| = |
| ||||||||||
Ein ähnliches Beispiel wird am Anfang des folgenden Videos behandelt.
Lernvideo
Funktionsgleichung bestimmen PARABEL – Quadratische Funktionen ablesen
Kanal: MathemaTrick
Mathe-Aufgaben zu diesem Thema
Online-Übungen, die du direkt im Browser bearbeiten und lösen kannst! Mit ausführlichen Musterlösungen, professionellen Erklär-Videos und gezielten Hilfestellungen.
Ähnliche Themen
- Was lässt sich über die Graphen der Funktionen folgender Gleichungen jeweils aussagen: y = x², y = (x + 2)², y = x² + 2, y = (x - 1)² + 3?
- Was sagt der Graph der Funktion y = ax² (a≠0) über die Form der Parabel aus?
- Wie überprüft man, ob ein Punkt bezüglich eines Funktionsgraphen auf, über oder unter diesem liegt?
- Wie erstellt man eine Wertetabelle für eine Funktion und was bedeuten die Einträge?
- Wie beeinflussen die Parameter a, xS und yS die Form und Lage einer Parabel mit der Gleichung y = a⋅(x - xS)² + yS?
- Wie zeichnet man eine Parabel in Scheitelform ohne Wertetabelle?