Hilfe
  • Bestimme zunächst die Gleichung von g.
  • Um zu überprüfen, ob ein Punkt P(x | y) auf der Geraden liegt, setzt man den x-Wert in den Funktionsterm ein und berechnet den Termwert. Ist das Ergebnis der y-Wert des Punktes, dann liegt der Punkt auf der Geraden.

Prüfe rechnerisch, ob die Punkte P und Q auf der Ursprungsgeraden g durch A liegen. Möglicher Weise liegt auch keiner der beiden Punkte drauf.

  • A(21|12); P(−3,5|−2); Q(32|18)
    P liegt drauf.
    Q liegt drauf.
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lineare Funktionen - Graph und Funktionsterm
Lernvideo

Lineare Funktionen - Graph und Funktionsterm

Kanal: Mathegym

Wie kann man rechnerisch überprüfen, ob ein Punkt auf einer Geraden liegt?
#646
Um zu überprüfen, ob ein Punkt P(x | y) auf der Geraden liegt, setzt man den x-Wert in den Funktionsterm ein und berechnet den Termwert. Ist das Ergebnis der y-Wert des Punktes, dann liegt der Punkt auf der Geraden.
Beispiel
Liegt der Punkt P auf der Geraden g?
Gerade:
 
y
=
2
·
x
+
5
Punkt:
 
P
 
3
 
|
 
10
Wie überprüft man, ob ein Punkt bezüglich eines Funktionsgraphen auf, über oder unter diesem liegt?
#234
Um zu überprüfen, ob ein Punkt (a|b) über, auf oder unter dem Graphen einer Funktion liegt, setzt man a in den Funktionsterm f(x) ein. Der Punkt liegt
  • über dem Graphen, wenn b > f(a)
  • auf dem Graphen, wenn b = f(a)
  • unter dem Graphen, wenn b < f(a)
Beispiel
g: 
y
=
1
3
 
x
+
2
3
;        
A
 
2
 
|
 
0
;   
B
 
4
 
|
 
2,5
;   
C
 
8
 
|
 
3
Gib jeweils an, ob der der Punkt über, auf oder unter der Geraden liegt.
Wie berechnet man die fehlende Koordinate eines Punktes auf einer Geraden, wenn eine Koordinate bekannt ist?
#650
Wenn von einem Punkt auf der Geraden nur die x-Koordinate bekannt ist, erhält man die y-Koordinate, indem man die x-Koordinate in den Funktionsterm einsetzt und den Wert des Funktionsterms berechnet. Das Ergebnis ist die y-Koordinate.

Wenn von einem Punkt auf der Geraden nur die y-Koordinate bekannt ist, erhält man die x-Koordinate, indem man den Funktionsterm gleich der y-Koordinate setzt und die entstehende Gleichung nach x auflöst. Das Ergebnis ist die x-Koordinate.
Beispiel
Die beiden Punkte liegen auf der Geraden. Berechne die fehlenden Werte.
Gerade:
 
y
=
3
·
x
1
Punkte:
P
 
2
 
|
 
?
Q
 
?
 
|
 
14

Mathe-Aufgaben passend zu deinem Lehrplan

Aufgaben für deinen Lehrplan
Wir zeigen dir exakt die Mathe-Übungen, die für deinen Lehrplan bzw. Bundesland vorgesehen sind. Wähle dazu bitte deinen Lehrplan.
Lehrplan wählen
Diese Aufgabentypen erwarten dich in den weiteren Übungslevel:
1. Level6 Aufgaben
Lineare Funktionen - Lage Punkt/Gerade rechnerisch
2. Level4 Aufgaben
Lineare Funktionen - Lage Punkt/Gerade rechnerisch
3. Level4 Aufgaben
Lineare Funktionen - Lage Punkt/Gerade rechnerisch
4. Level5 Aufgaben
Lineare Funktionen - Lage Punkt/Gerade rechnerisch
5. Level6 Aufgaben
Lineare Funktionen - Lage Punkt/Gerade rechnerisch

Dies ist nur eine kleine Auswahl. In unserem Aufgabenbereich findest du viele weitere Mathe-Übungen, die zu deiner Schule und deinem Lehrplan passen!

Zum Aufgabenbereich