Hilfe
  • Beispiel
    Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
  • Hilfe zum Thema
    Weiß man, dass eine Parabel die x-Achse an den Stellen x1 und x2 schneidet, so kann man ihren Scheitel S leicht bestimmen:
    • xS = (x1 + x2) : 2
      Begründung: xS (also die x-Koordinate des Scheitels) liegt aus Symmetriegründen genau in der Mitte des Intervalls [x1 ; x2]
    • yS = p(xS)
      d.h. die y-Koordinate erhält man durch Einsetzen von xS in den Funktionsterm der Parabel
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 5 in Level 10
  • Bestimme Art, Größe und Lage des Extremwerts.
  • T
     
    x
    =
    2
    ·
    x
    +
    1
    ·
    x
    +
    3
    für
    Schritt 1 von 3
    Gib die Nullstellen an: 
    x
    1
    =
     und 
    x
    2
    =
    .
  • keine Berechtigung
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt der Zwischenschritt als nicht gelöst und die Bewertung deiner Leistung für diese Aufgabe verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die Beispiel-Aufgabe zu diesem Aufgabentyp an.
Stoff zum Thema (+Video)
Wie bestimmt man das Maximum bzw. Minimum einer Parabelfunktion und wann tritt es auf?
#1117
  • Der Scheitelpunkt einer Parabel gibt an, wo die zugehörige Funktion ein Maximum/Minimum hat und wie groß dieses ist. Wenn xS die x-Koordinate und yS die y-Koordinate des Scheitels ist, so hat die Funktion an der Stelle xS das Maximum bzw. Minimum yS.
  • Bei einer nach oben geöffneten Parabel liegt ein Minimum, bei einer nach unten geöffneten Parabel ein Maximum vor.
Wie leitet man die allgemeine Form einer Parabelgleichung aus der Scheitelpunktform ab?
#911
Von der Scheitelpunktform
y = a⋅(x − xS)2 + yS
kommt man durch ausquadrieren bzw. dem Anwenden der binomischen Formeln zur allgemeinen Form:
y = a⋅x² + bx + c
Beispiel
Bringe in die allgemeine Form und gib dann die Parameter a, b und c an:
y
=
5
·
x
+
2
2
1
Wie löst man Extremwertaufgaben in vier Schritten?
#658
Bei Extremwertaufgaben geht man am besten in folgenden Schritten vor:
  1. Darstellung der zu optimierenden Größe als Term
  2. Term in Abhängigkeit von einer Variable (z.B. "x") darstellen
  3. Term in Nullstellen- oder Scheitelpunktform umwandeln
  4. Extremwert und zugehöriges "x" bestimmen
Beispiel
Einem gleichschenkligen Dreieck mit der Basislänge 4 und der Höhe 3,5 ist ein Rechteck einbeschrieben. Bestimme Länge und Breite des Rechtecks mit dem maximalen Flächeninhalt.
Wie bestimmt man den Scheitel einer Parabel aus ihren Schnittpunkten mit der x-Achse?
#436
Weiß man, dass eine Parabel die x-Achse an den Stellen x1 und x2 schneidet, so kann man ihren Scheitel S leicht bestimmen:
  • xS = (x1 + x2) : 2
    Begründung: xS (also die x-Koordinate des Scheitels) liegt aus Symmetriegründen genau in der Mitte des Intervalls [x1 ; x2]
  • yS = p(xS)
    d.h. die y-Koordinate erhält man durch Einsetzen von xS in den Funktionsterm der Parabel
Beispiel 1
Bestimme Art, Größe und Lage des Extremwerts.
T
 
x
=
1
2
·
2x
+
1
·
x
2,5
Beispiel 2
Die Parabel mit der Gleichung 
y
=
3x
2
2x
+
1
 schneidet die x-Achse an den Stellen 
x
1
=
1
 und 
x
2
=
1
3
. Bestimme die Koordinaten des Scheitelpunkts.
Wie lautet die Gleichung einer Parabel in Scheitelform, wenn die allgemeine Form y = ax² + bx + c und der Scheitel S(s ; t) gegeben sind?
#432
Eine Parabel mit der Gleichung y = ax² + bx + c (Allgemeine Form) und dem Scheitel S(s ; t) lässt sich auch durch die Gleichung y = a (x − s)² + t (Scheitelpunktform) ausdrücken.
Beispiel
Lass den zugehörigen Graphen von einer Software zeichnen und lies schließlich die Scheitelform der zugehörigen Parabel ab.
y
=
0,2x
2
x
+
3,25
In Scheitelform: 
y
=
?
Welche Formen einer Parabelgleichung gibt es und wie wandelt man diese um?
#236
Man unterscheidet bei einer Parabel zwischen
  • Allgemeiner Form   y = ax² + bx + c   ⇒ Ablesen des Schnittpunkts mit der y-Achse (0;c)
  • Scheitelpunktform   y = a (x - xS)² + yS   ⇒ Ablesen des Scheitels S

Von der allgemeinen Form ausgehend erhält man die Scheitelpunktform mithilfe der quadratischen Ergänzung.

Beispiel
Bringe 
y
=
1
4
 
x
2
2x
+
1
 in Scheitelpunktform und gib den Scheitel an.
Diese Aufgabentypen erwarten dich in den weiteren Übungslevel:
1. Level5 Aufgaben
Quadratische Funktionen - Extremwertaufgaben
2. Level6 Aufgaben
Quadratische Funktionen - Extremwertaufgaben
3. Level5 Aufgaben
Quadratische Funktionen - Extremwertaufgaben
4. Level6 Aufgaben
Quadratische Funktionen - Extremwertaufgaben
5. Level4 Aufgaben
Quadratische Funktionen - Extremwertaufgaben
6. Level4 Aufgaben
Quadratische Funktionen - Extremwertaufgaben
7. Level4 Aufgaben
Quadratische Funktionen - Extremwertaufgaben
8. Level2 Aufgaben
Quadratische Funktionen - Extremwertaufgaben
9. Level5 Aufgaben
Quadratische Funktionen - Extremwertaufgaben
10. Level5 Aufgaben
Quadratische Funktionen - Extremwertaufgaben
11. Level4 Aufgaben
Quadratische Funktionen - Extremwertaufgaben
12. Level4 Aufgaben
Quadratische Funktionen - Extremwertaufgaben
13. Level4 Aufgaben
Quadratische Funktionen - Extremwertaufgaben
14. Level6 Aufgaben
Quadratische Funktionen - Extremwertaufgaben
15. Level3 Aufgaben
Quadratische Funktionen - Extremwertaufgaben
16. Level1 Aufgabe
Quadratische Funktionen - Extremwertaufgaben

Dies ist nur eine kleine Auswahl. In unserem Aufgabenbereich findest du viele weitere Mathe-Übungen, die zu deiner Schule und deinem Lehrplan passen!

Zum Aufgabenbereich