Hilfe
  • Hilfe zum Thema

    Berechnung von Wahrscheinlichkeiten mit dem GTR:

    Gegeben: Bernoullikette der Länge n mit Trefferwahrscheinlichkeit p.

    Wahrscheinlichkeit für GENAU r Treffer:

    Bn,p = P(X = r) = binompdf (n , p , r)

    Wahrscheinlichkeit für HÖCHSTENS r Treffer:

    Fn,p = P(X ≤ r) = binomcdf (n , p , r)
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 5 in Level 8
  • Berechne mit deinen GTR-Befehlen binompdf bzw. binomcdf. Ergebnis(se) mit 2 Dezimalstelle(n) Genauigkeit angeben - geringe Abweichungen vom richtigen Ergebnis werden toleriert!
  • In einer Urne befinden sich 12 weiße und 8 schwarze Kugeln. Per Zufall wird sieben mal hintereinander eine Kugel gezogen und anschließend zurückgelegt. 
    Mit welcher Wahrscheinlichkeit sind unter den gezogenen Kugeln weniger als vier weiße?
    P ≈
  • keine Berechtigung
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die Hilfe zu dieser Aufgabe an.
Stoff zum Thema
Was ist der Binomialkoeffizient und wie berechnet man ihn?
#701

Binomialkoeffizienten

Der Binomialkoeffizient gibt in Bernoulli-Ketten die Anzahl der Pfade an, bei n Durchführungen genau r Treffer zu erhalten.
Dies wird bei der Berechnung von Wahrscheinlichkeiten bei Bernoulli-Ketten benötigt.

Schreibweise:

  • wie ein Vektor (n über r in runden Klammern)
  • Gelesen: "n über r"
Berechnung: mithilfe der nCr-Taste deines Taschenrechners, also zuerst n eingeben, dann nCr-Taste drücken, dann r eingeben. Ohne Taschenrechner:
  • Zähler: n · (n-1) · (n-2) · ... (n-r+1) [insgesamt r Faktoren]
  • Nenner: 1 · 2 · 3 · ... · r [ebenfalls r Faktoren]
  • Kürzen (bis der Nenner 1 ist!), dann verbliebenen Zähler berechnen.
Beispiel
49
7
=
?
Was ist ein Bernoulli-Experiment und eine Bernoulli-Kette und wie berechnet man die Wahrscheinlichkeit eines Pfades?
#702

Bernoulli-Experimente und Bernoulli-Ketten:

Bernoulli-Experiment:
Zufallsversuch, bei dem genau zwei mögliche Ergebnisse interessieren, z.B.

  • "Erfolg -- Nichterfolg"
  • "Treffer -- Niete"
  • "0 -- 1".
  • Ist die Treffer-Wahrscheinlichkeit p, so ist die Nicht-Treffer-Wahrscheinlichkeit q = 1− p (Gegenereignis).

Bernoulli-Kette der Länge n:

  • Ein Bernoulli-Experiment wird n mal wiederholt, wobei die Durchführungen jeweils unabhängig voneinander sind.
  • Ein Pfad mit r Treffern hat die Wahrscheinlichkeit pr · qn-r, wobei p die Trefferwahrscheinlichkeit und q = 1 − p die Nicht-Trefferwahrscheinlichkeit ist.
  • In einer Bernoulli-Kette der Länge n gibt der Binomialkoeffizient "n über r" die Anzahl der Pfade mit genau r Treffern an.

Beispiel
Ein Würfel wird 4 Mal geworfen. Handelt es sich um ein Bernoulli-Experiment? Wenn ja, dann gib Trefferwahrscheinlichkeit und Länge der Bernoulli-Kette an.
Ein Würfel wird 4 Mal geworfen und die Anzahl der geraden Zahlen notiert. Handelt es sich um ein Bernoulli-Experiment? Wenn ja, dann gib Trefferwahrscheinlichkeit und Länge der Bernoulli-Kette an.
Wie berechnet man die Wahrscheinlichkeit P(X=r) in einer Bernoulli-Kette der Länge n?
#703

Bernoulli Formel:

Für eine Bernoulli-Kette der Länge n lässt sich die Wahrscheinlichkeit P(X=r), dass die Zufallsgröße X genau r Treffer (Trefferwahrscheinlichkeit p) hat mit der Bernoulli-Formel berechnen:

Bn,p = P(X=r) = (nr) · pr · (1 − p)n-r
Beispiel 1
Ein Würfel wird 5 Mal geworfen.
Wahrscheinlichkeit für genau vier Einser:
 
?%
Wahrscheinlichkeit für höchstens zwei Quadratzahlen:
 
?%
Beispiel 2
Wie oft muss ein Würfel mindestens geworfen werden, um mit einer Wahrscheinlichkeit von mindestens 80% mindestens eine 1 zu würfeln?
Wie bestimmt man Wahrscheinlichkeiten der Form P(Z≤k) und P(Z>k)?
#509

Wahrscheinlichkeiten der Art P( X ≤ k ) einer binomial verteilten Zufallsgröße X können mit unterschiedlichen Hilfsmitteln (WTR, CAS/MMS, GTR, Tafelwerk) bestimmt werden. Man beachte, welche Hilfsmittel für die Prüfung zugelassen sind!

Um P( Z > k ) zu bestimmen, ermittelt man erst den Wahrscheinlichkeitswert für das Gegenereignis "Z ≤ k" und zieht diesen dann von 1 ab.

Beispiel 1
Eine Urne enthält eine weiße und 7 schwarze Kugeln. Wie oft musst du mindestens eine Kugel (mit Zurücklegen) ziehen, um mit einer Wahrscheinlichkeit von mindestens 80% mindestens 2-mal "weiß" zu ziehen?
Antwort: mindestens ?-mal
Beispiel 2
Die Verarbeitung von Bauteilen wird als "sehr gut" bezeichnet, wenn man in einer Stichprobe von 100 Stück mit einer Mindestwahrscheinlichkeit von 96% maximal 3 defekte Bauteile findet. Wie hoch darf der Anteil an defekten Bauteilen maximal sein?
Antwort:
 
? % (gerundet auf eine Dezimale)
Wann ist eine Zufallsgröße X binomialverteilt?
#1222
Eine Zufallsgröße X heißt binomialverteilt nach B(n;p), wenn X die Werte 0, 1, 2, ..., n (n natürliche Zahl) annimmt und wenn P(X=k)=(nk)·pk·(1−p)n−k gilt.

Zählt X die Anzahl der Treffer bei einem Bernoulli-Experiment, so ist X binomialverteilt.

Wie berechnet man mit einem GTR die Wahrscheinlichkeit für genau oder höchstens r Treffer bei einer Binomialverteilung?
#785

Berechnung von Wahrscheinlichkeiten mit dem GTR:

Gegeben: Bernoullikette der Länge n mit Trefferwahrscheinlichkeit p.

Wahrscheinlichkeit für GENAU r Treffer:

Bn,p = P(X = r) = binompdf (n , p , r)

Wahrscheinlichkeit für HÖCHSTENS r Treffer:

Fn,p = P(X ≤ r) = binomcdf (n , p , r)
Beispiel
P
14
0,78
 
X > k
 
>
 
0,95
Für welche Werte von k gilt diese Ungleichung?
Wie unterscheidet man bei binomialverteilten Zufallsgrößen und welche Experimente folgen keiner Binomialverteilung?
#1151

Bei binomialverteilten Zufallsgrößen (Bernoullikette der Länge n und Trefferwahrscheinlichkeit p) ist zwischen "nicht kumuliert", also P(Z=k) und "kumuliert", also P(Z≤k), zu unterscheiden.

Berechnung von Wahrscheinlichkeiten mit dem GTR:

Gegeben: Bernoullikette der Länge n mit Trefferwahrscheinlichkeit p.

Wahrscheinlichkeit für GENAU k Treffer:

Bn,p = P(X = k) = binompdf (n , p , k)

Wahrscheinlichkeit für HÖCHSTENS k Treffer:

Fn,p = P(X ≤ k) = binomcdf (n , p , k)

Bei vielen Experimenten, z.B. Ziehen mehrerer Kugeln mit einem Griff oder hintereinander ohne Zurücklegen, liegt keine Bernoullikette vor, daher kommen hier andere Formeln zur Anwendung.

Beispiel
Aus einer Urne mit 10 Kugeln, von denen 4 weiß sind, werden 5 durch Zufall gezogen. Gib jeweils einen Term an für die Wahrscheinlichkeit…
a) dreimal Weiß, wenn hintereinander mit Zurücklegen gezogen wird.
b) höchstens dreimal Weiß, wenn hintereinander mit Zurücklegen gezogen wird.
c) dreimal Weiß, wenn hintereinander ohne Zurücklegen gezogen wird.
d) dreimal Weiß, wenn alle 5 Kugeln auf einmal gezogen werden.
 

Mathe-Aufgaben passend zu deinem Lehrplan

Aufgaben für deinen Lehrplan
Wir zeigen dir exakt die Mathe-Übungen, die für deinen Lehrplan bzw. Bundesland vorgesehen sind. Wähle dazu bitte deinen Lehrplan.
Lehrplan wählen
Diese Aufgabentypen erwarten dich in den weiteren Übungslevel:
1. Level5 Aufgaben
Stochastik - Bernoullikette und Binomialverteilung
2. Level5 Aufgaben
Stochastik - Bernoullikette und Binomialverteilung
3. Level4 Aufgaben
Stochastik - Bernoullikette und Binomialverteilung
4. Level4 Aufgaben
Stochastik - Bernoullikette und Binomialverteilung
5. Level4 Aufgaben
Stochastik - Bernoullikette und Binomialverteilung
6. Level3 Aufgaben
Stochastik - Bernoullikette und Binomialverteilung
7. Level6 Aufgaben
Stochastik - Bernoullikette und Binomialverteilung
8. Level5 Aufgaben
Stochastik - Bernoullikette und Binomialverteilung
9. Level4 Aufgaben
Stochastik - Bernoullikette und Binomialverteilung
10. Level3 Aufgaben
Stochastik - Bernoullikette und Binomialverteilung
11. Level4 Aufgaben
Stochastik - Bernoullikette und Binomialverteilung
12. Level6 Aufgaben
Stochastik - Bernoullikette und Binomialverteilung
13. Level3 Aufgaben
Stochastik - Bernoullikette und Binomialverteilung
14. Level6 Aufgaben
Stochastik - Bernoullikette und Binomialverteilung
15. Level4 Aufgaben
Stochastik - Bernoullikette und Binomialverteilung
16. Level4 Aufgaben
Stochastik - Bernoullikette und Binomialverteilung

Dies ist nur eine kleine Auswahl. In unserem Aufgabenbereich findest du viele weitere Mathe-Übungen, die zu deiner Schule und deinem Lehrplan passen!

Zum Aufgabenbereich