Hilfe
  • Hilfe speziell zu dieser Aufgabe
    Die Beträge der einzugebenden Zahlen ergeben in der Summe 20
  • Beispiel
    Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
  • Hilfe zum Thema

    Ein Produkt von Wurzeln lässt sich als Produkt unter einer Wurzel schreiben und umgekehrt. Sofern weder \(a\) noch \(b\) negativ sind, gilt also

    \[ \sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b} \]

    Ein Quotient von Wurzeln lässt sich als Quotient unter einer Wurzel schreiben und umgekehrt. Sofern weder \(a\) noch \(b\) negativ sind, gilt also

    \[ \sqrt{a} : \sqrt{b} = \sqrt{a : b} \]

    Nach dem Distributivgesetz können gleiche Wurzeln (bzw. Vielfache davon) addiert und subtrahiert werden:

    \[ a\sqrt{c} + b\sqrt{c} = (a + b)\sqrt{c} \]

    Beachte dabei: \( \sqrt{a} + \sqrt{b} \neq \sqrt{a + b} \)

    Oft kann man teilweise die Wurzel ziehen. Sofern \(a\) nicht negativ ist, kann man den Faktor \(a^2\) unabhängig vom Faktor \(b\) radizieren:

    \[ \sqrt{a^2 \cdot b} = \sqrt{a^2} \cdot \sqrt{b} = a \cdot \sqrt{b} \]
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 6 in Level 18
  • Fasse, wenn möglich, zusammen. Ansonsten schreibe "!" in die Eingabefelder. Brüche sind in der Form a/b einzugeben.
  • 2
    2
    ·
    3
    7
    =
    2
    2
    +
    3
    7
    =
  • keine Berechtigung
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die Beispiel-Aufgabe zu diesem Aufgabentyp an.
Stoff zum Thema (+Video)
Quadratwurzeln - Grundrechenarten, teilweise radizieren
Lernvideo

Quadratwurzeln - Grundrechenarten, teilweise radizieren

Kanal: Mathegym

Wie lauten die Rechenregeln für Quadratwurzeln und was bedeutet "teilweise radizieren"?
#713

Ein Produkt von Wurzeln lässt sich als Produkt unter einer Wurzel schreiben und umgekehrt. Sofern weder \(a\) noch \(b\) negativ sind, gilt also

\[ \sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b} \]

Ein Quotient von Wurzeln lässt sich als Quotient unter einer Wurzel schreiben und umgekehrt. Sofern weder \(a\) noch \(b\) negativ sind, gilt also

\[ \sqrt{a} : \sqrt{b} = \sqrt{a : b} \]

Nach dem Distributivgesetz können gleiche Wurzeln (bzw. Vielfache davon) addiert und subtrahiert werden:

\[ a\sqrt{c} + b\sqrt{c} = (a + b)\sqrt{c} \]

Beachte dabei: \( \sqrt{a} + \sqrt{b} \neq \sqrt{a + b} \)

Oft kann man teilweise die Wurzel ziehen. Sofern \(a\) nicht negativ ist, kann man den Faktor \(a^2\) unabhängig vom Faktor \(b\) radizieren:

\[ \sqrt{a^2 \cdot b} = \sqrt{a^2} \cdot \sqrt{b} = a \cdot \sqrt{b} \]
Beispiel 1
50
·
2
=
?
50
2
=
?
50
=
?
Beispiel 2
108
300
=
?
Beispiel 3
108
10
·
3
=
?
Beispiel 4
9
·
16
=
?
9
+
16
=
?
9
+
16
=
?
Beispiel 5
1
2
·
3
7
·
2
3
·
14
=
?
Wie funktioniert die Addition und Subtraktion von Quadratwurzeln?
#226

Nach dem Distributivgesetz können gleiche Wurzeln (bzw. Vielfache davon) addiert und subtrahiert werden:

\[ a\sqrt{c} + b\sqrt{c} = (a + b)\sqrt{c} \]

Achtung: \( \sqrt{a} + \sqrt{b} \neq \sqrt{a + b} \)

Beispiel 1
5
·
10
9
·
10
=
?
Beispiel 2
Fasse zusammen:
2
 
3
3
 
2
+
3
2
 
2
Beispiel 3
Fasse zusammen:
18
3
+
5
 
2
6
 
32
Wie funktioniert die Multiplikation und Division von Quadratwurzeln und was versteht man unter teilweisem Radizieren?
#228

Ein Produkt von Wurzeln lässt sich als Produkt unter einer Wurzel schreiben und umgekehrt. Sofern weder \(a\) noch \(b\) negativ sind, gilt also \[ \sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b} \]

Unter anderem ermöglicht diese Regel, Wurzeln teilweise zu radizieren. Sofern \(a\) nicht negativ ist, kann man den Faktor \(a^2\) unabhängig vom Faktor \(b\) radizieren:

\[ \sqrt{a^2 \cdot b} = \sqrt{a^2} \cdot \sqrt{b} = a \cdot \sqrt{b} \]
Beispiel 1
Radiziere teilweise:
720
=
?
Beispiel 2
Vereinfache:
3
 
45
·
18
=
?
Was bedeutet die Normalform eines Wurzelterms?
#573
Die Normalform eines Wurzelterms erfüllt zwei Bedingungen:
  1. Die Zahl unter der Wurzel ist quadratfrei, enthält also keinen quadratischen Teiler.
  2. Unter dem Bruchstrich stehen keine Wurzeln.
Beispiel
Bringe
 
80
 
in
 
Normalform.

Mathe-Aufgaben passend zu deinem Lehrplan

Aufgaben für deinen Lehrplan
Wir zeigen dir exakt die Mathe-Übungen, die für deinen Lehrplan bzw. Bundesland vorgesehen sind. Wähle dazu bitte deinen Lehrplan.
Lehrplan wählen
Diese Aufgabentypen erwarten dich in den weiteren Übungslevel:
1. Level10 Aufgaben
Quadratwurzeln - Grundrechenarten, teilweise radizieren
2. Level15 Aufgaben
Quadratwurzeln - Grundrechenarten, teilweise radizieren
3. Level10 Aufgaben
Quadratwurzeln - Grundrechenarten, teilweise radizieren
4. Level10 Aufgaben
Quadratwurzeln - Grundrechenarten, teilweise radizieren
5. Level10 Aufgaben
Quadratwurzeln - Grundrechenarten, teilweise radizieren
6. Level6 Aufgaben
Quadratwurzeln - Grundrechenarten, teilweise radizieren
7. Level10 Aufgaben
Quadratwurzeln - Grundrechenarten, teilweise radizieren
8. Level6 Aufgaben
Quadratwurzeln - Grundrechenarten, teilweise radizieren
9. Level6 Aufgaben
Quadratwurzeln - Grundrechenarten, teilweise radizieren
10. Level6 Aufgaben
Quadratwurzeln - Grundrechenarten, teilweise radizieren
11. Level6 Aufgaben
Quadratwurzeln - Grundrechenarten, teilweise radizieren
12. Level10 Aufgaben
Quadratwurzeln - Grundrechenarten, teilweise radizieren
13. Level2 Aufgaben
Quadratwurzeln - Grundrechenarten, teilweise radizieren
14. Level5 Aufgaben
Quadratwurzeln - Grundrechenarten, teilweise radizieren
15. Level10 Aufgaben
Quadratwurzeln - Grundrechenarten, teilweise radizieren
16. Level5 Aufgaben
Quadratwurzeln - Grundrechenarten, teilweise radizieren
17. Level8 Aufgaben
Quadratwurzeln - Grundrechenarten, teilweise radizieren
18. Level6 Aufgaben
Quadratwurzeln - Grundrechenarten, teilweise radizieren

Dies ist nur eine kleine Auswahl. In unserem Aufgabenbereich findest du viele weitere Mathe-Übungen, die zu deiner Schule und deinem Lehrplan passen!

Zum Aufgabenbereich