Hilfe
  • Sei α ein Winkel < 90° im rechtwinkligen Dreieck. Mit "Gegenkathete" sei die Kathete gemeint, die α gegenüberliegt, mit "Ankathete" diejenige, die an α anliegt. Dann gelten folgende Zusammenhänge:
    • sin(α)= Gegenkathete / Hypotenuse
    • cos(α)= Ankathete / Hypotenuse
    • tan(α)= Gegenkathete / Ankathete
TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Berechne die gesuchte Seite. Sofern nicht anders festgelegt ist α der Winkel bei A, β der Winkel bei B und γ der Winkel bei C. Ergebnis(se) falls erforderlich auf die 1. Dezimalstelle gerundet eingeben!

  • γ
    =
    90°
    a
    =
    5,5cm
    α
    =
    35°
    c
     
     
    cm
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Wie lauten die Formeln für Sinus, Kosinus und Tangens im rechtwinkligen Dreieck?
#454
Sei α ein Winkel < 90° im rechtwinkligen Dreieck. Mit "Gegenkathete" sei die Kathete gemeint, die α gegenüberliegt, mit "Ankathete" diejenige, die an α anliegt. Dann gelten folgende Zusammenhänge:
  • sin(α)= Gegenkathete / Hypotenuse
  • cos(α)= Ankathete / Hypotenuse
  • tan(α)= Gegenkathete / Ankathete
Beispiel 1
In einem rechtwinkligen Dreieck mit rechtem Winkel bei C ist bekannt: b = 10, c = 11. Berechne β.
Beispiel 2
Von einem rechtwinkligen Dreieck mit ∠C = 90° ist bekannt: a = 3 und β = 32°. Berechne die restlichen Seiten und Winkel.
Wie ist der Steigungswinkel einer Geraden definiert und wie hängt er mit der Steigung m zusammen?
#1130

Der Steigungswinkel 0°≤α<180° einer Geraden bezeichnet die Größe des Winkels, um den g gegenüber der x-Achse gedreht ist. Für 0°<α<90° handelt es sich um eine steigende, für 90°<α<180° um eine fallende Gerade.

Die Steigung m einer Geraden und ihr Steigungswinkel α stehen in folgendem Zusammenhang:

m=tan(α)

Beachte: wenn m gegeben und α gesucht ist, rechnet man zunächst tan-1(m) aus. Ist das Ergbnis positiv, hat man damit α ermittelt. Ist es negativ, addiert man noch 180° hinzu.

Beispiel
Eine Straße weist eine 39%ige Steigung auf. Berechne den Steigungswinkel.

Mathe-Aufgaben passend zu deinem Lehrplan

Aufgaben für deinen Lehrplan
Wir zeigen dir exakt die Mathe-Übungen, die für deinen Lehrplan bzw. Bundesland vorgesehen sind. Wähle dazu bitte deinen Lehrplan.
Lehrplan wählen
Diese Aufgabentypen erwarten dich in den weiteren Übungslevel:
1. Level5 Aufgaben
Trigonometrie am rechtwinkligen Dreieck
2. Level5 Aufgaben
Trigonometrie am rechtwinkligen Dreieck
3. Level5 Aufgaben
Trigonometrie am rechtwinkligen Dreieck
4. Level6 Aufgaben
Trigonometrie am rechtwinkligen Dreieck
5. Level5 Aufgaben
Trigonometrie am rechtwinkligen Dreieck
6. Level3 Aufgaben
Trigonometrie am rechtwinkligen Dreieck

Dies ist nur eine kleine Auswahl. In unserem Aufgabenbereich findest du viele weitere Mathe-Übungen, die zu deiner Schule und deinem Lehrplan passen!

Zum Aufgabenbereich