Hilfe
  • Beispiel
    Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
  • Hilfe zum Thema
    Die Punkte der Winkelhalbierenden besitzen die Eigenschaft, dass sie zu beiden Schenkeln denselben Abstand haben. Daher gilt folgender Satz:

    Die drei Winkelhalbierenden eines jeden Dreiecks schneiden sich in einem Punkt. Dieser Punkt hat von allen drei Seiten denselben Abstand, ist also der Mittelpunkt des Inkreises.

  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 3 in Level 1
  • Gegeben ist das Dreieck mit den Ecken A, B und C. Konstruiere den Mittelpunkt des Inkreises und gib seine Koordinaten an. Ergebnis(se) mit 1 Dezimalstelle(n) Genauigkeit angeben - geringe Abweichungen vom richtigen Ergebnis werden toleriert!
  • A
     
    1
     
    |
     
    5
    ;
    B
     
    4
     
    |
     
    0
    ;
    C
     
    1
     
    |
     
    2
    M
     
     
    |
     
  • Checkos: 0 max.
GeoGebra
GeoGebra
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.

GeoGebra-Editor

Für diese Aufgabe steht dir GeoGebra zur Verfügung. Damit kannst du Konstruktionen direkt am Bildschirm durchführen.
Keine Zugriffsberechtigung
Geogebra steht nur angemeldeten Benutzern mit gültiger Lizenz zur Verfügung.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die Beispiel-Aufgabe zu diesem Aufgabentyp an.
Stoff zum Thema
Wie konstruiert man den Umkreis eines Dreiecks?
#506
Die Punkte der Winkelhalbierenden besitzen die Eigenschaft, dass sie zu beiden Schenkeln denselben Abstand haben. Daher gilt folgender Satz:

Die drei Winkelhalbierenden eines jeden Dreiecks schneiden sich in einem Punkt. Dieser Punkt hat von allen drei Seiten denselben Abstand, ist also der Mittelpunkt des Inkreises.

Beispiel
Gegeben ist das folgende Dreieck. Konstruiere den Inkreis.
graphik
Wie konstruiert man den Umkreis eines Dreiecks?
#505
Jeder Punkt auf der Mittelsenkrechten einer Strecke hat zu beiden Endpunkten der Strecke dieselbe Entfernung. Daher gilt folgender Satz:

Die drei Mittelsenkrechten eines jeden Dreiecks schneiden sich in einem Punkt. Dieser Punkt ist von allen drei Ecken gleich weit entfernt, ist also der Mittelpunkt des Umkreises.

Beispiel
Gegeben ist das folgende Dreieck. Konstruiere den Umkreis.
graphik

Mathe-Aufgaben passend zu deinem Lehrplan

Aufgaben für deinen Lehrplan
Wir zeigen dir exakt die Mathe-Übungen, die für deinen Lehrplan bzw. Bundesland vorgesehen sind. Wähle dazu bitte deinen Lehrplan.
Lehrplan wählen
Diese Aufgabentypen erwarten dich in den weiteren Übungslevel:
1. Level3 Aufgaben
Dreiecke - Inkreis und Umkreis
2. Level5 Aufgaben
Dreiecke - Inkreis und Umkreis
3. Level3 Aufgaben
Dreiecke - Inkreis und Umkreis
4. Level3 Aufgaben
Dreiecke - Inkreis und Umkreis
5. Level3 Aufgaben
Dreiecke - Inkreis und Umkreis
6. Level4 Aufgaben
Dreiecke - Inkreis und Umkreis
7. Level3 Aufgaben
Dreiecke - Inkreis und Umkreis

Dies ist nur eine kleine Auswahl. In unserem Aufgabenbereich findest du viele weitere Mathe-Übungen, die zu deiner Schule und deinem Lehrplan passen!

Zum Aufgabenbereich