Hilfe
  • Stammfunktion einer Potenzfunktion: Für alle ganzen Zahlen n ≠ -1 gilt

    ∫ xn dx = 1 / (n + 1) · xn + 1 + C

    Man geht also umgekehrt zum Ableiten vor: beim Ableiten wird zuerst mit n multipliziert, dann der Exponent n um 1 reduziert. Beim Bilden der Stammfunktion wird zuerst der Exponent n um 1 vergrößert, dann durch n+1 geteilt.

    Spezialfall n = -1:

    ∫ 1/x dx = ln |x| + C

TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Ergänze so, dass F eine vereinfachte Stammfunktion von f ist. Brüche sind in der Form a/b zu schreiben.

  • f
     
    x
    =
    2
     
    x
    3
    F
    x
    =
     
    x
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Wie berechnet man die Stammfunktion einer Potenzfunktion?
#570
Stammfunktion einer Potenzfunktion: Für alle ganzen Zahlen n ≠ -1 gilt

∫ xn dx = 1 / (n + 1) · xn + 1 + C

Man geht also umgekehrt zum Ableiten vor: beim Ableiten wird zuerst mit n multipliziert, dann der Exponent n um 1 reduziert. Beim Bilden der Stammfunktion wird zuerst der Exponent n um 1 vergrößert, dann durch n+1 geteilt.

Spezialfall n = -1:

∫ 1/x dx = ln |x| + C

Beispiel
Gib eine Stammfunktion für 
f
 
x
=
2
3
 
x
7
 an.
Was ist eine Stammfunktion F von f und welche Beziehung besteht zwischen den Werten von f und F?
#401

Die Funktion F ist genau dann eine Stammfunktion von f, wenn F´ = f (wenn also f die Ableitung von F ist). Damit gilt folgender Zusammenhang

F bzw. GF f (x)
streng monoton steigend > 0 im betrachteten Intervall
streng monoton fallend < im betrachteten Intervall
keine Steigung (waagrechte Tangente) = 0
Was versteht man unter der "Ableitungskette" in Bezug auf Funktionen und ihre Graphen?
#402
Hinsichtlich f, F (Stammfunktion von f) und f´ gilt also die "Ableitungskette"

F → f → f´

Ihre Graphen stehen in folgendem Zusammenhang:

F bzw. f f bzw.
streng monoton steigend verläuft oberhalb der x-Achse
streng monoton fallend verläuft unterhalb der x-Achse
waagrechte Tangente schneidet/berührt die x-Achse

Mathe-Aufgaben passend zu deinem Lehrplan

Aufgaben für deinen Lehrplan
Wir zeigen dir exakt die Mathe-Übungen, die für deinen Lehrplan bzw. Bundesland vorgesehen sind. Wähle dazu bitte deinen Lehrplan.
Lehrplan wählen
Diese Aufgabentypen erwarten dich in den weiteren Übungslevel:
1. Level6 Aufgaben
Stammfunktion
2. Level5 Aufgaben
Stammfunktion
3. Level3 Aufgaben
Stammfunktion
4. Level5 Aufgaben
Stammfunktion

Dies ist nur eine kleine Auswahl. In unserem Aufgabenbereich findest du viele weitere Mathe-Übungen, die zu deiner Schule und deinem Lehrplan passen!

Zum Aufgabenbereich