Hilfe
  • Hilfe speziell zu dieser Aufgabe
    Skizziere den Graphen und die beiden Flächenstücke. Bestimme für jedes Flächenstück einen Term und stelle dann eine geeignete Gleichung auf.

Bestimme k. Ergebnis(se) falls erforderlich auf die 2. Dezimalstelle gerundet eingeben!

  • f
     
    x
    =
    e
    1
    x
    Betrachte das von 
    G
    f
     , der x-Achse und den Senkrechten 
    x
    =
    k
     und 
    x
    =
    3
     eingeschlossene Flächenstück. Wie groß muss k sein, damit das Teilstück rechts von der y-Achse halb so groß ist wie das Teilstück links von der y-Achse?
    k ≈
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
FLÄCHE berechnen INTEGRAL – Integralrechnung Flächenberechnung
Lernvideo

FLÄCHE berechnen INTEGRAL – Integralrechnung Flächenberechnung

Kanal: MathemaTrick

Wie berechnet man die Fläche zwischen zwei Graphen ohne Schnittpunkte in einem Intervall?
#578
Besitzen die Graphen zweier Funktionen f und g im Intervall ]a;b[ keinen Schnittpunkt, so erhält man die Fläche, die sie in diesem Intervall einschließen, durch Integration der Differenz f − g zwischen den Integrationsgrenzen a und b. Bei negativem Integralwert (wenn f < g im betrachteten Intervall) ist der Betrag davon zu nehmen.
Wie bestimmt man die Fläche unter einem Graphen ohne Schnittpunkte mit der x-Achse?
#577
Besitzt der Graph einer Funktion im Intervall ]a;b[ keinen Schnittpunkt mit der x-Achse, so erhält man die Fläche, die er in diesem Intervall mit der x-Achse einschließt durch Integration von f zwischen den Integrationsgrenzen a und b. Bei negativem Integralwert (wenn das betrachtete Flächenstück unter der x-Achse liegt) ist der Betrag davon zu nehmen.
Wie bestimmt man die Fläche zwischen zwei Graphen in einem Intervall, wenn deren Verlauf unbekannt ist?
#569
Um die Fläche zu ermitteln, die zwischen zwei Graphen Gf und Gg im Intervall I = [a;b] (d.h. nach links und rechts begrenzt durch die Vertikalen x = a und x = b) liegt, gehe wie folgt vor:
  1. Bilde die Differenz d = f − g und vereinfache den Term so weit wie möglich.
  2. Ermittle eine Stammfunktion D von d.
  3. Überprüfe, ob und wo sich beide Graphen im Intervall I schneiden. Kommst du mit dem Ansatz f(x) = g(x) rechnerisch nicht weiter, führt evtl. eine Skizze weiter (es reicht, wenn Schnittstellen durch die Skizze ausgeschlossen werden können!).
  4. Evtl. Schnittstellen, die im Intervall I liegen, unterteilen I in Teilintervalle. Integriere nun die Differenz d über die einzelnen Teilintervalle. Dabei kannst du immer auf dieselbe Stammfunktion D zurückgreifen.
  5. Addiere zum Schluss die BETRÄGE der einzelnen Integrale.
Beispiel
Bestimme den Inhalt der Fläche, welche von den beiden Parabeln p und q mit 
p
 
x
=
x
2
+
1
 und 
q
 
x
=
x
2
+
9
 eingeschlossen wird.

Mathe-Aufgaben passend zu deinem Lehrplan

Aufgaben für deinen Lehrplan
Wir zeigen dir exakt die Mathe-Übungen, die für deinen Lehrplan bzw. Bundesland vorgesehen sind. Wähle dazu bitte deinen Lehrplan.
Lehrplan wählen
Diese Aufgabentypen erwarten dich in den weiteren Übungslevel:
1. Level5 Aufgaben
Integral - Flächenberechnung
2. Level5 Aufgaben
Integral - Flächenberechnung
3. Level3 Aufgaben
Integral - Flächenberechnung
4. Level2 Aufgaben
Integral - Flächenberechnung
5. Level3 Aufgaben
Integral - Flächenberechnung

Dies ist nur eine kleine Auswahl. In unserem Aufgabenbereich findest du viele weitere Mathe-Übungen, die zu deiner Schule und deinem Lehrplan passen!

Zum Aufgabenbereich