Hilfe
  • Rechenregeln für den Logarithmus

    Summen und Differenzen von Logarithmen mit gleicher Basis lassen sich zusammenfassen:

    (1) logb x + logb y = logb (x · y)

    (2) logb x − logb y = logb (x : y)

    Achtung: Für Produkte und Quotienten zweier Logarithmen gibt es keine entsprechende Formel!

    Ist das Argument des Logarithmus eine Potenz, so lässt sich umformen:

    (3) logb ar = r · logb a

Forme so um, dass möglichst kleine natürliche Argumente entstehen.

  • ln6
    =
         
     
    ln2
    +
    ln3
         
     
    ln2
    ·
    ln3
         
     
    ln
    1
    +
    ln5
         
     
    ln
    1
    ·
    ln5
    (Mehrfachauswahl möglich)
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Wie löst man Gleichungen der Form ln(...) = b und was ergibt sich, wenn b = 0?
#860
Gleichungen der Art

ln(...)=b

löst man, indem man auf beiden Seiten exp anwendet. Merke dir für den Spezialfall b=0, dass

e0=1.

Beispiel
Löse die Gleichung
ln
 
3
11x
=
0
 
ohne Taschenrechner.
Welche grundlegenden Rechenregeln gelten für Logarithmen?
#1232

Rechenregeln für den Logarithmus

Summen und Differenzen von Logarithmen mit gleicher Basis lassen sich zusammenfassen:

(1) logb x + logb y = logb (x · y)

(2) logb x − logb y = logb (x : y)

Achtung: Für Produkte und Quotienten zweier Logarithmen gibt es keine entsprechende Formel!

Ist das Argument des Logarithmus eine Potenz, so lässt sich umformen:

(3) logb ar = r · logb a

Mathe-Aufgaben passend zu deinem Lehrplan

Aufgaben für deinen Lehrplan
Wir zeigen dir exakt die Mathe-Übungen, die für deinen Lehrplan bzw. Bundesland vorgesehen sind. Wähle dazu bitte deinen Lehrplan.
Lehrplan wählen

Dies ist nur eine kleine Auswahl. In unserem Aufgabenbereich findest du viele weitere Mathe-Übungen, die zu deiner Schule und deinem Lehrplan passen!

Zum Aufgabenbereich