Hilfe
  • Beispiel
    Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
  • Hilfe zum Thema
    Die Schar aller Tangenten an einen Funktionsgraphen im Punkt (a|f(a)) kann durch eine Funktionsgeichung angegeben werden. Zur Ermittlung dieser Funktionsgleichung geht man genauso vor wie bei einer einzelnen Tangente. Der einzige Unterschied besteht darin, dass man mit allgemeinen Koordinaten a und f(a) rechnen muss statt mit festen Werten.
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 3 in Level 6
  • Bestimme die Gleichung für die Schar der Tangenten Ta an Gf im Punkt (a|f(a)). Gib Potenzen in der Form x^n ein.
  • f
     
    x
    =
    x
    2
    2
    T
    a
    : y
    =
    graphik
  • keine Berechtigung
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die Beispiel-Aufgabe zu diesem Aufgabentyp an.
Stoff zum Thema (+Video)
Wie bestimmt man die Steigung der Tangente an einem Punkt eines Graphen?
#480
Sei T: y = mx + t die Tangente an Gf im Punkt P[x0|f(0)]. Dann gilt:

m = f ´ (x0)

Beispiel 1
Gegeben ist die Funktion f
 
x
=
2
x
 
x ≠ 0
 
.
Bestimme den Punkt Q des Graphen Gf, dessen Tangente durch
 
P
 
0
 
|
 
4
3
 
geht.
Beispiel 2
f
 
x
=
x
3
+
2x
+
1
Bestimme die Tangente an Gf an der Stelle 
x
=
1.
Beispiel 3
f
 
x
=
1
3x
2
+
5x
Bestimme die Tangente an Gf an der Stelle 
x
=
0,6.
Beispiel 4
f
 
x
=
x
3
+
2x
+
1
Bestimme alle Tangenten an Gf, die parallel sind zu 
g: y
=
7
3
 
x
2.
Was ist die Normale eines Funktionsgraphen an einem Punkt und wie berechnet man ihre Steigung?
#1132
Zu jeder Tangente T an Gf im Punkt P(x0|f(x0)) gibt es eine ebenfalls durch P gehende, zu T senkrechte Gerade N. Diese nennt man Normale. Sofern T nicht parallel zur x-Achse verläuft besteht zwischen den Steigungen von T und N folgender Zusammenhang:

mT·mN=−1

Wie bestimmt man die Funktionsgleichung einer Tangentenschar zu einem Funktionsgraphen?
#1206
Die Schar aller Tangenten an einen Funktionsgraphen im Punkt (a|f(a)) kann durch eine Funktionsgeichung angegeben werden. Zur Ermittlung dieser Funktionsgleichung geht man genauso vor wie bei einer einzelnen Tangente. Der einzige Unterschied besteht darin, dass man mit allgemeinen Koordinaten a und f(a) rechnen muss statt mit festen Werten.
Beispiel
f
 
x
=
x
3
2x
+
1
Bestimme die Gleichung für die Schar der Tangenten 
T
a
 an 
G
f
 im Punkt (a|f(a)).
graphik
Wie ist der Steigungswinkel einer Geraden definiert und wie hängt er mit der Steigung m zusammen?
#1130

Der Steigungswinkel 0°≤α<180° einer Geraden bezeichnet die Größe des Winkels, um den g gegenüber der x-Achse gedreht ist. Für 0°<α<90° handelt es sich um eine steigende, für 90°<α<180° um eine fallende Gerade.

Die Steigung m einer Geraden und ihr Steigungswinkel α stehen in folgendem Zusammenhang:

m=tan(α)

Beachte: wenn m gegeben und α gesucht ist, rechnet man zunächst tan-1(m) aus. Ist das Ergbnis positiv, hat man damit α ermittelt. Ist es negativ, addiert man noch 180° hinzu.

Beispiel
f
 
x
=
x
·
x
2
2
Berechne den Steigungswinkel der Tangente an 
G
f
 im Punkt P(0,5|?).
Diese Aufgabentypen erwarten dich in den weiteren Übungslevel:
1. Level3 Aufgaben
Tangentengleichung und Steigungswinkel
2. Level3 Aufgaben
Tangentengleichung und Steigungswinkel
3. Level5 Aufgaben
Tangentengleichung und Steigungswinkel
4. Level5 Aufgaben
Tangentengleichung und Steigungswinkel
5. Level3 Aufgaben
Tangentengleichung und Steigungswinkel
6. Level3 Aufgaben
Tangentengleichung und Steigungswinkel
7. Level3 Aufgaben
Tangentengleichung und Steigungswinkel
8. Level3 Aufgaben
Tangentengleichung und Steigungswinkel

Dies ist nur eine kleine Auswahl. In unserem Aufgabenbereich findest du viele weitere Mathe-Übungen, die zu deiner Schule und deinem Lehrplan passen!

Zum Aufgabenbereich