Hilfe
  • Beispiel
    Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
  • Hilfe zum Thema
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 3 in Level 5
  • Löse die Aufgabe Schritt für Schritt.
  • Gegeben ist die Schar von Funktionen 
    f
    k
     mit  
    f
    k
     
    x
    =
    e
    2kx
    x
    2
    ,  Definitionsmenge 
    D
    f
     
    =
     
     und 
    k
     
     
    . Der Graph von 
    f
    k
     wird mit 
    G
    k
     bezeichnet.
    a) Gib die Anzahl der Nullstellen und das Verhalten von 
    f
    k
     für x→±∞ an.
    b) Untersuche die Funktionen der Schar in Abhängigkeit von k auf Symmetrie bezüglich des Koordinatensystems.
    c) Bestimme Lage und Art aller Extrempunkte von 
    G
    k
     in Abhängigkeit von k.
    d) Weise nach, dass alle Graphen der Funktionenschar genau einen Punkt gemeinsam haben, und ermittle die Gleichung der Tangente an 
    G
    k
     in diesem Punkt in Abhängigkeit von k.
    e) Bestimme alle Werte für 
    k
     
     
     so, dass 
    f
    k
     die Wertemenge ]0;e] besitzt, und zeichne die Graphen der zugehörigen Scharfunktionen unter Berücksichtigung der bisherigen Ergebnisse.
    Schritt 1 von 11
    Zu a)
    Anzahl der Nullstellen:
    l i m
    x→±∞
     
    f
     
    x
    =
    Hinweis: klicke das Tastatur-Symbol an, um ∞ eingeben zu können.
  • keine Berechtigung
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt der Zwischenschritt als nicht gelöst und die Bewertung deiner Leistung für diese Aufgabe verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die Beispiel-Aufgabe zu diesem Aufgabentyp an.
Stoff zum Thema (+Video)
Beispiel 1
Gegeben ist die für x∈ℝ definierte Funktion f mit 
f
 
x
=
2
3x
·
e
x
.
a) Wie verhält sich die Funktion im Unendlichen?
b) Gib alle Nullstellen an.
c) Bestimme alle relativen Hoch- und Tiefpunkte.
d) Berechne f(-0,5), f(0) und f(4) und zeichne 
G
f
 auf der Grundlage aller bisherigen Ergebnisse im Intervall 
0,5
 
 
x
 
 
4
.
e) Die Tangente an 
G
f
 an der Stelle 
x
=
0
 bildet mit den Koordinatenachsen ein Dreieck. Bestimme dessen Fläche.
Beispiel 2
Gegeben ist die Funktion f mit  
f
 
x
=
 
e
·
ln
 
x
x
2
  und maximalem Definitionsbereich 
D
f
. Der Graph von f wird mit 
G
f
 bezeichnet.
a) Gib 
D
f
 an.
b) Ermittle das Verhalten von f an den Rändern der Definitionsmenge.
c) Berechne alle Nullstellen von f.
d) Bestimme Lage und Art aller Extrempunkte von 
G
f
.
e) Berechne f(8) und zeichne 
G
f
 auf der Grundlage aller bisherigen Ergebnisse im Intervall 
0
 
<
 
x
 
 
8
.
f) Gib die Wertemenge von f an.
Beispiel 3
Gegeben ist die Schar von Funktionen 
f
k
 mit  
f
k
 
x
=
x
·
e
1
x
k
,  Definitionsmenge 
D
f
 
=
 
 und 
k
 
 
+
. Der Graph von 
f
k
 wird mit 
G
k
 bezeichnet.
a) Gib die Nullstellen und das Verhalten von 
f
k
 für x→±∞ an.
b) Bestimme Lage und Art des Extrempunkts von 
G
k
 in Abhängigkeit von k.
c) Begründe, dass die Extrempunkte aller Graphen der Schar auf einer Halbgerade liegen, und beschreibe die Lage dieser Halbgerade im Koordinatensystem.
d) Weise nach, dass alle Graphen der Funktionenschar im Ursprung die gleiche Tangente besitzen, und gib eine Gleichung dieser Tangente an.
e) Bestimme den Wert für 
k
 so, dass 
G
k
 durch den Punkt 
6
 
|
 
6
e
2
 verläuft, und zeichne den Graphen der zugehörigen Scharfunktion unter Berücksichtigung der bisherigen Ergebnisse.
Beispiel
f
 
x
=
x
·
e
x
x
+
1
Bestimme
  • die maximale Definitionsmenge Dmax
  • die Nullstelle(n)
  • das Verhalten von f an den Rändern von Dmax
  • das Monotonieverhalten von f und die relativen Extrempunkte
Skizziere schließlich den Graphen von f unter Einbezug aller Teilergebnisse.
Beispiel
f
t
 
x
=
e
x
3
x
+
t
Bestimme den Parameterwert t so, dass die Tangente an 
G
t
 im Punkt (1 | ?) die Steigung 
1
4
 hat.

Mathe-Aufgaben passend zu deinem Lehrplan

Aufgaben für deinen Lehrplan
Wir zeigen dir exakt die Mathe-Übungen, die für deinen Lehrplan bzw. Bundesland vorgesehen sind. Wähle dazu bitte deinen Lehrplan.
Lehrplan wählen
Diese Aufgabentypen erwarten dich in den weiteren Übungslevel:
1. Level3 Aufgaben
Funktionsuntersuchung - exp und ln
2. Level3 Aufgaben
Funktionsuntersuchung - exp und ln
3. Level3 Aufgaben
Funktionsuntersuchung - exp und ln
4. Level3 Aufgaben
Funktionsuntersuchung - exp und ln
5. Level3 Aufgaben
Funktionsuntersuchung - exp und ln
6. Level2 Aufgaben
Funktionsuntersuchung - exp und ln

Dies ist nur eine kleine Auswahl. In unserem Aufgabenbereich findest du viele weitere Mathe-Übungen, die zu deiner Schule und deinem Lehrplan passen!

Zum Aufgabenbereich