Hilfe
  • Eine Definitionslücke ist (anders als bei einer Polstelle) behebbar, wenn der "problematische" Faktor im Nenner herausgekürzt werden kann. Zur näheren Bestimmung von Nullstellen, Polstellen und (evtl. behebbaren) Definitionslücken sollte man also wie folgt vorgehen:
    1. Zähler und Nenner so weit wie möglich faktorisieren
    2. Definitionsmenge bestimmen: ALLE auftretenden Faktoren im Nenner, die Null werden können, liefern eine Definitionslücke (ganz gleich, ob man sie herauskürzen kann oder nicht)
    3. Definitionslücken näher spezifizieren: behebbar, wenn herauskürzbar; ansonsten Polstelle
    4. Nullstellen bestimmen: nur solche Faktoren im Zähler, die nicht herausgekürzt werden können, liefern Nullstellen der Funktion.
TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Wähle richtig aus.

  • f
     
    x
    =
    3x
    3
    x
    2
    1
    x
    =
    1
     ist eine
    x
    =
    0
     ist eine
    x
    =
    1
     ist eine
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Wie erkennt man Achsen- und Punktsymmetrie bei Funktionen, insbesondere bei ganzrationalen Funktionen?
#758
  • Achsensymmetrie zur y-Achse:
  • Für alle x aus dem Definitionsbereich gilt:
    f(x) = f(-x)

  • Punktsymmetrie zum Ursprung:
  • Für alle x aus dem Definitionsbereich gilt:
    -f(x) = f(-x)

  • Spezialfall: ganzrationale Funktionen

  • f(x) = f(-x) gilt genau dann, wenn nur gerade Exponenten auftauchen.
    Also gilt:
    Hat eine ganzrationale Funktion nur x-Potenzen mit geraden Hochzahlen, so ist der Graph der Funktion achsensymmetrisch zur y-Achse.

    -f(x) = f(-x) gilt genau dann, wenn nur ungerade Exponenten auftauchen.
    Also gilt:
    Hat eine ganzrationale Funktion nur x-Potenzen mit ungeraden Hochzahlen, so ist der Graph der Funktion punktsymmetrisch zum Ursprung.

  • Hinweis:
  • Die einzige Funktion deren Graph sowohl achsensymmetrisch zur y-Achse also auch punktsymmetrisch zum Ursprung ist, ist f(x)=0.
Was versteht man unter einer behebbaren Definitionslücke?
#325
Eine Definitionslücke ist (anders als bei einer Polstelle) behebbar, wenn der "problematische" Faktor im Nenner herausgekürzt werden kann. Zur näheren Bestimmung von Nullstellen, Polstellen und (evtl. behebbaren) Definitionslücken sollte man also wie folgt vorgehen:
  1. Zähler und Nenner so weit wie möglich faktorisieren
  2. Definitionsmenge bestimmen: ALLE auftretenden Faktoren im Nenner, die Null werden können, liefern eine Definitionslücke (ganz gleich, ob man sie herauskürzen kann oder nicht)
  3. Definitionslücken näher spezifizieren: behebbar, wenn herauskürzbar; ansonsten Polstelle
  4. Nullstellen bestimmen: nur solche Faktoren im Zähler, die nicht herausgekürzt werden können, liefern Nullstellen der Funktion.
Beispiel
Bestimme evtl. auftretende Nullstellen und Definitionslücken und charakterisiere diese näher.
f(x)
=
4
6x
9x
3
4x
Beispiel
Untersuche die folgende rationale Funktion hinsichtlich evtl. Defintionslücken, Polstellen, Nullstellen sowie Asymptoten und skizziere anhand der gewonnenen Informationen den Graph.
f(x)
=
2x
3
8x
6x
2
3x
3

Mathe-Aufgaben passend zu deinem Lehrplan

Aufgaben für deinen Lehrplan
Wir zeigen dir exakt die Mathe-Übungen, die für deinen Lehrplan bzw. Bundesland vorgesehen sind. Wähle dazu bitte deinen Lehrplan.
Lehrplan wählen
Diese Aufgabentypen erwarten dich in den weiteren Übungslevel:
1. Level6 Aufgaben
Gebrochen-rationale Funktionen - Funktionsterm und Graph
2. Level4 Aufgaben
Gebrochen-rationale Funktionen - Funktionsterm und Graph
3. Level3 Aufgaben
Gebrochen-rationale Funktionen - Funktionsterm und Graph
4. Level3 Aufgaben
Gebrochen-rationale Funktionen - Funktionsterm und Graph

Dies ist nur eine kleine Auswahl. In unserem Aufgabenbereich findest du viele weitere Mathe-Übungen, die zu deiner Schule und deinem Lehrplan passen!

Zum Aufgabenbereich